|
@@ -51,7 +51,7 @@ def l2_normalize(x, axis=0, epsilon=1e-12, copy=True):
|
|
|
epsilon: float, optional
|
|
|
A small value such as to avoid division by zero.
|
|
|
copy : bool, optional
|
|
|
- Copy X or not.
|
|
|
+ Copy x or not.
|
|
|
"""
|
|
|
if copy:
|
|
|
x = np.copy(x)
|
|
@@ -59,7 +59,7 @@ def l2_normalize(x, axis=0, epsilon=1e-12, copy=True):
|
|
|
return x
|
|
|
|
|
|
|
|
|
-def minmax_normalize(x, axis=0, copy=True):
|
|
|
+def minmax_normalize(x, axis=0, epsilon=1e-12, copy=True):
|
|
|
"""minmax normalize an array along a given axis.
|
|
|
|
|
|
Args:
|
|
@@ -68,7 +68,7 @@ def minmax_normalize(x, axis=0, copy=True):
|
|
|
axis : None or int or tuple of ints, optional
|
|
|
Axis or axes along which to operate.
|
|
|
copy : bool, optional
|
|
|
- Copy X or not.
|
|
|
+ Copy x or not.
|
|
|
"""
|
|
|
if copy:
|
|
|
x = np.copy(x)
|
|
@@ -76,7 +76,7 @@ def minmax_normalize(x, axis=0, copy=True):
|
|
|
minval = np.min(x, axis=axis, keepdims=True)
|
|
|
maxval = np.max(x, axis=axis, keepdims=True)
|
|
|
maxval -= minval
|
|
|
- maxval = np.maximum(maxval, 1e-5)
|
|
|
+ maxval = np.maximum(maxval, epsilon)
|
|
|
|
|
|
x -= minval
|
|
|
x /= maxval
|