|
@@ -0,0 +1,140 @@
|
|
|
|
+import numpy as np
|
|
|
|
+from .boxes_utils import assert_and_normalize_shape
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def translate_boxes(boxes, x_shift=0, y_shift=0, copy=True):
|
|
|
|
+ """scale boxes coordinates in x and y dimensions.
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ boxes: (N, 4+K)
|
|
|
|
+ x_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
|
|
|
|
+ shift in x dimension
|
|
|
|
+ y_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
|
|
|
|
+ shift in y dimension
|
|
|
|
+ copy: bool
|
|
|
|
+
|
|
|
|
+ References:
|
|
|
|
+ `datasets.pipelines.RandomCrop` in mmdetection
|
|
|
|
+ """
|
|
|
|
+ boxes = np.array(boxes, dtype=np.float32, copy=copy)
|
|
|
|
+
|
|
|
|
+ x_shift = np.asarray(x_shift, np.float32)
|
|
|
|
+ y_shift = np.asarray(y_shift, np.float32)
|
|
|
|
+
|
|
|
|
+ x_shift = assert_and_normalize_shape(x_shift, boxes.shape[0])
|
|
|
|
+ y_shift = assert_and_normalize_shape(y_shift, boxes.shape[0])
|
|
|
|
+
|
|
|
|
+ boxes[:, 0] += x_shift
|
|
|
|
+ boxes[:, 1] += y_shift
|
|
|
|
+ boxes[:, 2] += x_shift
|
|
|
|
+ boxes[:, 3] += y_shift
|
|
|
|
+ return boxes
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def adjust_boxes(boxes, x_min_shift, y_min_shift, x_max_shift, y_max_shift, copy=True):
|
|
|
|
+ """
|
|
|
|
+ Args:
|
|
|
|
+ boxes: (N, 4+K)
|
|
|
|
+ x_min_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
|
|
|
|
+ shift (x_min, y_min) in x dimension
|
|
|
|
+ y_min_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
|
|
|
|
+ shift (x_min, y_min) in y dimension
|
|
|
|
+ x_max_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
|
|
|
|
+ shift (x_max, y_max) in x dimension
|
|
|
|
+ y_max_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
|
|
|
|
+ shift (x_max, y_max) in y dimension
|
|
|
|
+ copy: bool
|
|
|
|
+ """
|
|
|
|
+ boxes = np.array(boxes, dtype=np.float32, copy=copy)
|
|
|
|
+
|
|
|
|
+ x_min_shift = np.asarray(x_min_shift, np.float32)
|
|
|
|
+ y_min_shift = np.asarray(y_min_shift, np.float32)
|
|
|
|
+ x_max_shift = np.asarray(x_max_shift, np.float32)
|
|
|
|
+ y_max_shift = np.asarray(y_max_shift, np.float32)
|
|
|
|
+
|
|
|
|
+ x_min_shift = assert_and_normalize_shape(x_min_shift, boxes.shape[0])
|
|
|
|
+ y_min_shift = assert_and_normalize_shape(y_min_shift, boxes.shape[0])
|
|
|
|
+ x_max_shift = assert_and_normalize_shape(x_max_shift, boxes.shape[0])
|
|
|
|
+ y_max_shift = assert_and_normalize_shape(y_max_shift, boxes.shape[0])
|
|
|
|
+
|
|
|
|
+ boxes[:, 0] += x_min_shift
|
|
|
|
+ boxes[:, 1] += y_min_shift
|
|
|
|
+ boxes[:, 2] += x_max_shift
|
|
|
|
+ boxes[:, 3] += y_max_shift
|
|
|
|
+ return boxes
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def inflate_or_deflate_boxes(boxes, width_delta=0, height_delta=0, copy=True):
|
|
|
|
+ """
|
|
|
|
+ Args:
|
|
|
|
+ boxes: (N, 4+K)
|
|
|
|
+ width_delta: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
|
|
|
|
+ height_delta: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
|
|
|
|
+ copy: bool
|
|
|
|
+ """
|
|
|
|
+ boxes = np.array(boxes, dtype=np.float32, copy=copy)
|
|
|
|
+
|
|
|
|
+ width_delta = np.asarray(width_delta, np.float32)
|
|
|
|
+ height_delta = np.asarray(height_delta, np.float32)
|
|
|
|
+
|
|
|
|
+ width_delta = assert_and_normalize_shape(width_delta, boxes.shape[0])
|
|
|
|
+ height_delta = assert_and_normalize_shape(height_delta, boxes.shape[0])
|
|
|
|
+
|
|
|
|
+ half_width_delta = width_delta * 0.5
|
|
|
|
+ half_height_delta = height_delta * 0.5
|
|
|
|
+ boxes[:, 0] -= half_width_delta
|
|
|
|
+ boxes[:, 1] -= half_height_delta
|
|
|
|
+ boxes[:, 2] += half_width_delta
|
|
|
|
+ boxes[:, 3] += half_height_delta
|
|
|
|
+ return boxes
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def inflate_boxes_to_square(boxes, copy=True):
|
|
|
|
+ """Inflate boxes to square
|
|
|
|
+ Args:
|
|
|
|
+ boxes: (N, 4+K)
|
|
|
|
+ width_delta: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
|
|
|
|
+ height_delta: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
|
|
|
|
+ copy: bool
|
|
|
|
+ """
|
|
|
|
+ boxes = np.array(boxes, dtype=np.float32, copy=copy)
|
|
|
|
+
|
|
|
|
+ widths = boxes[:, 2] - boxes[:, 0]
|
|
|
|
+ heights = boxes[:, 3] - boxes[:, 1]
|
|
|
|
+ max_side_lengths = np.maximum(widths, heights)
|
|
|
|
+
|
|
|
|
+ width_deltas = np.subtract(max_side_lengths, widths, widths)
|
|
|
|
+ height_deltas = np.subtract(max_side_lengths, heights, heights)
|
|
|
|
+ width_deltas *= 0.5
|
|
|
|
+ height_deltas *= 0.5
|
|
|
|
+ boxes[:, 0] -= width_deltas
|
|
|
|
+ boxes[:, 1] -= height_deltas
|
|
|
|
+ boxes[:, 2] += width_deltas
|
|
|
|
+ boxes[:, 3] += height_deltas
|
|
|
|
+ return boxes
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def deflate_boxes_to_square(boxes, copy=True):
|
|
|
|
+ """Deflate boxes to square
|
|
|
|
+ Args:
|
|
|
|
+ boxes: (N, 4+K)
|
|
|
|
+ width_delta: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
|
|
|
|
+ height_delta: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1)
|
|
|
|
+ copy: bool
|
|
|
|
+ """
|
|
|
|
+ boxes = np.array(boxes, dtype=np.float32, copy=copy)
|
|
|
|
+
|
|
|
|
+ widths = boxes[:, 2] - boxes[:, 0]
|
|
|
|
+ heights = boxes[:, 3] - boxes[:, 1]
|
|
|
|
+ min_side_lengths = np.minimum(widths, heights)
|
|
|
|
+
|
|
|
|
+ width_deltas = np.subtract(min_side_lengths, widths, widths)
|
|
|
|
+ height_deltas = np.subtract(min_side_lengths, heights, heights)
|
|
|
|
+ width_deltas *= 0.5
|
|
|
|
+ height_deltas *= 0.5
|
|
|
|
+ boxes[:, 0] -= width_deltas
|
|
|
|
+ boxes[:, 1] -= height_deltas
|
|
|
|
+ boxes[:, 2] += width_deltas
|
|
|
|
+ boxes[:, 3] += height_deltas
|
|
|
|
+ return boxes
|
|
|
|
+
|