|
@@ -16,47 +16,44 @@ def translate_image(image, x_shift, y_shift, border_value=0):
|
|
Returns:
|
|
Returns:
|
|
ndarray: The translated image.
|
|
ndarray: The translated image.
|
|
"""
|
|
"""
|
|
|
|
+ assert image.ndim in [2, 3]
|
|
assert isinstance(x_shift, int)
|
|
assert isinstance(x_shift, int)
|
|
assert isinstance(y_shift, int)
|
|
assert isinstance(y_shift, int)
|
|
image_height, image_width = image.shape[:2]
|
|
image_height, image_width = image.shape[:2]
|
|
-
|
|
|
|
- if image.ndim == 2:
|
|
|
|
- channels = 1
|
|
|
|
- elif image.ndim == 3:
|
|
|
|
- channels = image.shape[-1]
|
|
|
|
-
|
|
|
|
- if isinstance(border_value, int):
|
|
|
|
- new_image = np.full_like(image, border_value)
|
|
|
|
|
|
+ channels = 1 if image.ndim == 2 else image.shape[2]
|
|
|
|
+
|
|
|
|
+ if isinstance(border_value, (int, float)):
|
|
|
|
+ dst_image = np.full_like(image, border_value)
|
|
elif isinstance(border_value, tuple):
|
|
elif isinstance(border_value, tuple):
|
|
assert len(border_value) == channels, \
|
|
assert len(border_value) == channels, \
|
|
'Expected the num of elements in tuple equals the channels' \
|
|
'Expected the num of elements in tuple equals the channels' \
|
|
'of input image. Found {} vs {}'.format(
|
|
'of input image. Found {} vs {}'.format(
|
|
len(border_value), channels)
|
|
len(border_value), channels)
|
|
if channels == 1:
|
|
if channels == 1:
|
|
- new_image = np.full_like(image, border_value[0])
|
|
|
|
|
|
+ dst_image = np.full_like(image, border_value[0])
|
|
else:
|
|
else:
|
|
border_value = np.asarray(border_value, dtype=image.dtype)
|
|
border_value = np.asarray(border_value, dtype=image.dtype)
|
|
- new_image = np.empty_like(image)
|
|
|
|
- new_image[:] = border_value
|
|
|
|
|
|
+ dst_image = np.empty_like(image)
|
|
|
|
+ dst_image[:] = border_value
|
|
else:
|
|
else:
|
|
raise ValueError(
|
|
raise ValueError(
|
|
'Invalid type {} for `border_value`.'.format(type(border_value)))
|
|
'Invalid type {} for `border_value`.'.format(type(border_value)))
|
|
|
|
|
|
if (abs(x_shift) >= image_width) or (abs(y_shift) >= image_height):
|
|
if (abs(x_shift) >= image_width) or (abs(y_shift) >= image_height):
|
|
- return new_image
|
|
|
|
|
|
+ return dst_image
|
|
|
|
|
|
- src_x_start = max(0, -x_shift)
|
|
|
|
- src_x_end = min(image_width, image_width - x_shift)
|
|
|
|
- dst_x_start = max(0, x_shift)
|
|
|
|
- dst_x_end = min(image_width, image_width + x_shift)
|
|
|
|
|
|
+ src_x_begin = max(-x_shift, 0)
|
|
|
|
+ src_x_end = min(image_width - x_shift, image_width)
|
|
|
|
+ dst_x_begin = max(x_shift, 0)
|
|
|
|
+ dst_x_end = min(image_width + x_shift, image_width)
|
|
|
|
|
|
- src_y_start = max(0, -y_shift)
|
|
|
|
- src_y_end = min(image_height, image_height - y_shift)
|
|
|
|
- dst_y_start = max(0, y_shift)
|
|
|
|
- dst_y_end = min(image_height, image_height + y_shift)
|
|
|
|
|
|
+ src_y_begin = max(-y_shift, 0)
|
|
|
|
+ src_y_end = min(image_height - y_shift, image_height)
|
|
|
|
+ dst_y_begin = max(y_shift, 0)
|
|
|
|
+ dst_y_end = min(image_height + y_shift, image_height)
|
|
|
|
|
|
- new_image[dst_y_start:dst_y_end, dst_x_start:dst_x_end] = \
|
|
|
|
- image[src_y_start:src_y_end, src_x_start:src_x_end]
|
|
|
|
- return new_image
|
|
|
|
|
|
+ dst_image[dst_y_begin:dst_y_end, dst_x_begin:dst_x_end] = \
|
|
|
|
+ image[src_y_begin:src_y_end, src_x_begin:src_x_end]
|
|
|
|
+ return dst_image
|
|
|
|
|
|
|
|
|