import numbers import khandy import numpy as np def crop_or_pad(image, x_min, y_min, x_max, y_max, border_value=0): """ See Also: translate_image References: tf.image.resize_image_with_crop_or_pad """ assert khandy.is_numpy_image(image) assert isinstance(x_min, numbers.Integral) and isinstance(y_min, numbers.Integral) assert isinstance(x_max, numbers.Integral) and isinstance(y_max, numbers.Integral) assert (x_min <= x_max) and (y_min <= y_max) src_height, src_width = image.shape[:2] dst_height, dst_width = y_max - y_min + 1, x_max - x_min + 1 channels = 1 if image.ndim == 2 else image.shape[2] if image.ndim == 2: dst_image_shape = (dst_height, dst_width) else: dst_image_shape = (dst_height, dst_width, channels) if isinstance(border_value, numbers.Real): dst_image = np.full(dst_image_shape, border_value, dtype=image.dtype) elif isinstance(border_value, tuple): assert len(border_value) == channels, \ 'Expected the num of elements in tuple equals the channels' \ 'of input image. Found {} vs {}'.format( len(border_value), channels) if channels == 1: dst_image = np.full(dst_image_shape, border_value[0], dtype=image.dtype) else: border_value = np.asarray(border_value, dtype=image.dtype) dst_image = np.empty(dst_image_shape, dtype=image.dtype) dst_image[:] = border_value else: raise ValueError( 'Invalid type {} for `border_value`.'.format(type(border_value))) src_x_begin = max(x_min, 0) src_x_end = min(x_max + 1, src_width) dst_x_begin = src_x_begin - x_min dst_x_end = src_x_end - x_min src_y_begin = max(y_min, 0) src_y_end = min(y_max + 1, src_height) dst_y_begin = src_y_begin - y_min dst_y_end = src_y_end - y_min if (src_x_begin >= src_x_end) or (src_y_begin >= src_y_end): return dst_image dst_image[dst_y_begin: dst_y_end, dst_x_begin: dst_x_end, ...] = \ image[src_y_begin: src_y_end, src_x_begin: src_x_end, ...] return dst_image def crop_or_pad_coords(boxes, image_width, image_height): """ References: `mmcv.impad` `pad` in https://github.com/kpzhang93/MTCNN_face_detection_alignment `MtcnnDetector.pad` in https://github.com/AITTSMD/MTCNN-Tensorflow """ x_mins = boxes[:, 0] y_mins = boxes[:, 1] x_maxs = boxes[:, 2] y_maxs = boxes[:, 3] dst_widths = x_maxs - x_mins + 1 dst_heights = y_maxs - y_mins + 1 src_x_begin = np.maximum(x_mins, 0) src_x_end = np.minimum(x_maxs + 1, image_width) dst_x_begin = src_x_begin - x_mins dst_x_end = src_x_end - x_mins src_y_begin = np.maximum(y_mins, 0) src_y_end = np.minimum(y_maxs + 1, image_height) dst_y_begin = src_y_begin - y_mins dst_y_end = src_y_end - y_mins coords = np.stack([dst_y_begin, dst_y_end, dst_x_begin, dst_x_end, src_y_begin, src_y_end, src_x_begin, src_x_end, dst_heights, dst_widths], axis=0) return coords def center_crop(image, dst_width, dst_height, strict=True): """ strict: when True, raise error if src size is less than dst size. when False, remain unchanged if src size is less than dst size, otherwise center crop. """ assert khandy.is_numpy_image(image) assert isinstance(dst_width, numbers.Integral) and isinstance(dst_height, numbers.Integral) src_height, src_width = image.shape[:2] if strict: assert (src_height >= dst_height) and (src_width >= dst_width) crop_top = max((src_height - dst_height) // 2, 0) crop_left = max((src_width - dst_width) // 2, 0) cropped = image[crop_top: dst_height + crop_top, crop_left: dst_width + crop_left, ...] return cropped def center_pad(image, dst_width, dst_height, strict=True): """ strict: when True, raise error if src size is greater than dst size. when False, remain unchanged if src size is greater than dst size, otherwise center pad. """ assert khandy.is_numpy_image(image) assert isinstance(dst_width, numbers.Integral) and isinstance(dst_height, numbers.Integral) src_height, src_width = image.shape[:2] if strict: assert (src_height <= dst_height) and (src_width <= dst_width) padding_x = max(dst_width - src_width, 0) padding_y = max(dst_height - src_height, 0) padding_top = padding_y // 2 padding_left = padding_x // 2 if image.ndim == 2: padding = ((padding_top, padding_y - padding_top), (padding_left, padding_x - padding_left)) else: padding = ((padding_top, padding_y - padding_top), (padding_left, padding_x - padding_left), (0, 0)) return np.pad(image, padding, 'constant')