import os import cv2 import khandy import numpy as np from PIL import Image def imread_pil(filename, to_mode='RGB'): with open(filename, 'rb') as f: img = Image.open(f) if to_mode is None: return img else: return img.convert(to_mode) def imread_cv(filename, flags=-1): """Improvement on cv2.imread, make it support filename including chinese character. """ try: return cv2.imdecode(np.fromfile(filename, dtype=np.uint8), flags) except Exception as e: return None def imwrite_cv(filename, image): """Improvement on cv2.imwrite, make it support filename including chinese character. """ cv2.imencode(os.path.splitext(filename)[-1], image)[1].tofile(filename) def normalize_image_dtype(image, keep_num_channels=False): """Normalize image dtype to uint8 (usually for visualization). Args: image : ndarray Input image. keep_num_channels : bool, optional If this is set to True, the result is an array which has the same shape as input image, otherwise the result is an array whose channels number is 3. Returns: out: ndarray Image whose dtype is np.uint8. """ assert (image.ndim == 3 and image.shape[-1] in [1, 3]) or (image.ndim == 2) image = image.astype(np.float32) image = khandy.minmax_normalize(image, axis=None, copy=False) image = np.array(image * 255, dtype=np.uint8) if not keep_num_channels: if image.ndim == 2: image = np.expand_dims(image, -1) if image.shape[-1] == 1: image = np.tile(image, (1,1,3)) return image def stack_image_list(image_list, dtype=np.float32): """Join a sequence of image along a new axis before first axis. References: `im_list_to_blob` in `py-faster-rcnn-master/lib/utils/blob.py` """ assert isinstance(image_list, (tuple, list)) max_dimension = np.array([image.ndim for image in image_list]).max() assert max_dimension in [2, 3] max_shape = np.array([image.shape[:2] for image in image_list]).max(axis=0) num_channels = [] for image in image_list: if image.ndim == 2: num_channels.append(1) else: num_channels.append(image.shape[-1]) assert len(set(num_channels) - set([1])) in [0, 1] max_num_channels = np.max(num_channels) blob = np.empty((len(image_list), max_shape[0], max_shape[1], max_num_channels), dtype=dtype) for k, image in enumerate(image_list): blob[k, :image.shape[0], :image.shape[1], :] = np.atleast_3d(image).astype(dtype, copy=False) if max_dimension == 2: blob = np.squeeze(blob, axis=-1) return blob def is_numpy_image(image): return isinstance(image, np.ndarray) and image.ndim in {2, 3} def is_gray_image(image, tol=3): assert is_numpy_image(image) if image.ndim == 2: return True elif image.ndim == 3: num_channels = image.shape[-1] if num_channels == 1: return True elif num_channels == 4: rgb = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR) gray = cv2.cvtColor(rgb, cv2.COLOR_BGR2GRAY) gray3 = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR) mae = np.mean(cv2.absdiff(rgb, gray3)) return mae <= tol elif num_channels == 3: gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray3 = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR) mae = np.mean(cv2.absdiff(image, gray3)) return mae <= tol else: return False else: return False