import numpy as np def crop_or_pad(image, x_min, y_min, x_max, y_max, border_value=0): """ References: tf.image.resize_image_with_crop_or_pad """ assert image.ndim in [2, 3] assert isinstance(x_min, int) and isinstance(y_min, int) assert isinstance(x_max, int) and isinstance(y_max, int) assert (x_min <= x_max) and (y_min <= y_max) src_height, src_width = image.shape[:2] dst_height, dst_width = y_max - y_min + 1, x_max - x_min + 1 channels = 1 if image.ndim == 2 else image.shape[2] if image.ndim == 2: dst_image_shape = (dst_height, dst_width) else: dst_image_shape = (dst_height, dst_width, channels) if isinstance(border_value, (int, float)): dst_image = np.full(dst_image_shape, border_value, dtype=image.dtype) elif isinstance(border_value, tuple): assert len(border_value) == channels, \ 'Expected the num of elements in tuple equals the channels' \ 'of input image. Found {} vs {}'.format( len(border_value), channels) if channels == 1: dst_image = np.full(dst_image_shape, border_value[0], dtype=image.dtype) else: border_value = np.asarray(border_value, dtype=image.dtype) dst_image = np.empty(dst_image_shape, dtype=image.dtype) dst_image[:] = border_value else: raise ValueError( 'Invalid type {} for `border_value`.'.format(type(border_value))) src_x_begin = max(x_min, 0) src_x_end = min(x_max + 1, src_width) dst_x_begin = src_x_begin - x_min dst_x_end = src_x_end - x_min src_y_begin = max(y_min, 0, ) src_y_end = min(y_max + 1, src_height) dst_y_begin = src_y_begin - y_min dst_y_end = src_y_end - y_min dst_image[dst_y_begin: dst_y_end, dst_x_begin: dst_x_end, ...] = \ image[src_y_begin: src_y_end, src_x_begin: src_x_end, ...] return dst_image def crop_or_pad_coords(boxes, image_width, image_height): """ References: `mmcv.impad` `pad` in https://github.com/kpzhang93/MTCNN_face_detection_alignment `MtcnnDetector.pad` in https://github.com/AITTSMD/MTCNN-Tensorflow """ x_mins = boxes[:, 0] y_mins = boxes[:, 1] x_maxs = boxes[:, 2] y_maxs = boxes[:, 3] src_x_begin = np.maximum(x_mins, 0) src_y_begin = np.maximum(y_mins, 0) src_x_end = np.minimum(x_maxs + 1, image_width) src_y_end = np.minimum(y_maxs + 1, image_height) dst_x_begin = src_x_begin - x_mins dst_y_begin = src_y_begin - y_mins dst_x_end = src_x_end - x_mins dst_y_end = src_y_end - y_mins coords = np.stack([src_x_begin, src_y_begin, src_x_end, src_y_end, dst_x_begin, dst_y_begin, dst_x_end, dst_y_end], axis=1) return coords