12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- import cv2
- import numpy as np
- from .crop_or_pad import crop_or_pad as _crop_or_pad
- def get_similarity_transform(src_pts, dst_pts):
- """Get similarity transform matrix from src_pts to dst_pts
-
- Args:
- src_pts: Kx2 np.array
- source points matrix, each row is a pair of coordinates (x, y)
- dst_pts: Kx2 np.array
- destination points matrix, each row is a pair of coordinates (x, y)
-
- Returns:
- xform_matrix: 3x3 np.array
- transform matrix from src_pts to dst_pts
- """
- src_pts = np.asarray(src_pts)
- dst_pts = np.asarray(dst_pts)
- assert src_pts.ndim == 2
- assert dst_pts.ndim == 2
- assert src_pts.shape[-1] == 2
- assert dst_pts.shape[-1] == 2
-
- npts = src_pts.shape[0]
- A = np.empty((npts * 2, 4))
- b = np.empty((npts * 2,))
- for k in range(npts):
- A[2 * k + 0] = [src_pts[k, 0], -src_pts[k, 1], 1, 0]
- A[2 * k + 1] = [src_pts[k, 1], src_pts[k, 0], 0, 1]
- b[2 * k + 0] = dst_pts[k, 0]
- b[2 * k + 1] = dst_pts[k, 1]
-
- x = np.linalg.lstsq(A, b)[0]
- xform_matrix = np.empty((3, 3))
- xform_matrix[0] = [x[0], -x[1], x[2]]
- xform_matrix[1] = [x[1], x[0], x[3]]
- xform_matrix[2] = [0, 0, 1]
- return xform_matrix
-
-
- def align_and_crop(image, landmarks, std_landmarks, align_size,
- crop_size=None, crop_center=None,
- return_transform_matrix=False):
- landmarks = np.asarray(landmarks)
- std_landmarks = np.asarray(std_landmarks)
- xform_matrix = get_similarity_transform(landmarks, std_landmarks)
- landmarks_ex = np.pad(landmarks, ((0,0),(0,1)), mode='constant', constant_values=1)
- dst_landmarks = np.dot(landmarks_ex, xform_matrix[:2,:].T)
- dst_image = cv2.warpAffine(image, xform_matrix[:2,:], dsize=align_size)
- if crop_size is not None:
- crop_center_ex = (crop_center[0], crop_center[1], 1)
- aligned_crop_center = np.dot(xform_matrix, crop_center_ex)
- dst_image = _crop_or_pad(dst_image, crop_size, aligned_crop_center)
-
- crop_begin_x = int(round(aligned_crop_center[0] - crop_size[0] / 2.0))
- crop_begin_y = int(round(aligned_crop_center[1] - crop_size[1] / 2.0))
- dst_landmarks -= np.asarray([[crop_begin_x, crop_begin_y]])
- if return_transform_matrix:
- return dst_image, dst_landmarks, xform_matrix
- else:
- return dst_image, dst_landmarks
-
-
|