123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- import cv2
- import numpy as np
- def crop_or_pad(image, crop_size, crop_center=None, pad_val=None):
- """
- References:
- tf.image.resize_image_with_crop_or_pad
- """
- assert image.ndim in [2, 3]
-
- src_height, src_width = image.shape[:2]
- channels = 1 if image.ndim == 2 else image.shape[2]
- dst_height, dst_width = crop_size[1], crop_size[0]
- if crop_center is None:
- crop_center = [src_width // 2, src_height // 2]
- if pad_val is not None:
- if isinstance(pad_val, (int, float)):
- pad_val = [pad_val for _ in range(channels)]
- assert len(pad_val) == channels
-
- crop_begin_x = int(round(crop_center[0] - dst_width / 2.0))
- crop_begin_y = int(round(crop_center[1] - dst_height / 2.0))
-
- src_begin_x = max(0, crop_begin_x)
- src_begin_y = max(0, crop_begin_y)
- src_end_x = min(src_width, crop_begin_x + dst_width)
- src_end_y = min(src_height, crop_begin_y + dst_height)
- dst_begin_x = max(0, -crop_begin_x)
- dst_begin_y = max(0, -crop_begin_y)
- dst_end_x = dst_begin_x + src_end_x - src_begin_x
- dst_end_y = dst_begin_y + src_end_y - src_begin_y
-
- if image.ndim == 2:
- cropped_image_shape = (dst_height, dst_width)
- else:
- cropped_image_shape = (dst_height, dst_width, channels)
- if pad_val is None:
- cropped = np.zeros(cropped_image_shape, image.dtype)
- else:
- cropped = np.full(cropped_image_shape, pad_val, dtype=image.dtype)
- if (src_end_x - src_begin_x <= 0) or (src_end_y - src_begin_y <= 0):
- return cropped
- else:
- cropped[dst_begin_y: dst_end_y, dst_begin_x: dst_end_x, ...] = \
- image[src_begin_y: src_end_y, src_begin_x: src_end_x, ...]
- return cropped
-
-
- def crop_or_pad_coords(boxes, image_width, image_height):
- """
- References:
- `mmcv.impad`
- `pad` in https://github.com/kpzhang93/MTCNN_face_detection_alignment
- `MtcnnDetector.pad` in https://github.com/AITTSMD/MTCNN-Tensorflow
- """
- x_min = boxes[:, 0]
- y_min = boxes[:, 1]
- x_max = boxes[:, 2]
- y_max = boxes[:, 3]
-
- src_x_begin = np.maximum(x_min, 0)
- src_y_begin = np.maximum(y_min, 0)
- src_x_end = np.minimum(x_max + 1, image_width)
- src_y_end = np.minimum(y_max + 1, image_height)
-
- dst_widths = x_max - x_min + 1
- dst_heights = y_max - y_min + 1
- dst_x_begin = np.maximum(-x_min, 0)
- dst_y_begin = np.maximum(-y_min, 0)
- dst_x_end = np.minimum(dst_widths, image_width - x_min)
- dst_y_end = np.minimum(dst_heights, image_height - y_min)
-
- coords = np.stack([src_x_begin, src_y_begin, src_x_end, src_y_end,
- dst_x_begin, dst_y_begin, dst_x_end, dst_y_end], axis=1)
- return coords
-
-
|