align_and_crop.py 2.4 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465
  1. import cv2
  2. import numpy as np
  3. from .crop_or_pad import crop_or_pad as _crop_or_pad
  4. def get_similarity_transform(src_pts, dst_pts):
  5. """Get similarity transform matrix from src_pts to dst_pts
  6. Args:
  7. src_pts: Kx2 np.array
  8. source points matrix, each row is a pair of coordinates (x, y)
  9. dst_pts: Kx2 np.array
  10. destination points matrix, each row is a pair of coordinates (x, y)
  11. Returns:
  12. xform_matrix: 3x3 np.array
  13. transform matrix from src_pts to dst_pts
  14. """
  15. src_pts = np.asarray(src_pts)
  16. dst_pts = np.asarray(dst_pts)
  17. assert src_pts.shape == dst_pts.shape
  18. assert (src_pts.ndim == 2) and (src_pts.shape[-1] == 2)
  19. npts = src_pts.shape[0]
  20. A = np.empty((npts * 2, 4))
  21. b = np.empty((npts * 2,))
  22. for k in range(npts):
  23. A[2 * k + 0] = [src_pts[k, 0], -src_pts[k, 1], 1, 0]
  24. A[2 * k + 1] = [src_pts[k, 1], src_pts[k, 0], 0, 1]
  25. b[2 * k + 0] = dst_pts[k, 0]
  26. b[2 * k + 1] = dst_pts[k, 1]
  27. x = np.linalg.lstsq(A, b)[0]
  28. xform_matrix = np.empty((3, 3))
  29. xform_matrix[0] = [x[0], -x[1], x[2]]
  30. xform_matrix[1] = [x[1], x[0], x[3]]
  31. xform_matrix[2] = [0, 0, 1]
  32. return xform_matrix
  33. def align_and_crop(image, landmarks, std_landmarks, align_size,
  34. crop_size=None, crop_center=None,
  35. return_transform_matrix=False):
  36. landmarks = np.asarray(landmarks)
  37. std_landmarks = np.asarray(std_landmarks)
  38. xform_matrix = get_similarity_transform(landmarks, std_landmarks)
  39. landmarks_ex = np.pad(landmarks, ((0,0),(0,1)), mode='constant', constant_values=1)
  40. dst_landmarks = np.dot(landmarks_ex, xform_matrix[:2,:].T)
  41. dst_image = cv2.warpAffine(image, xform_matrix[:2,:], dsize=align_size)
  42. if crop_size is not None:
  43. crop_center_ex = (crop_center[0], crop_center[1], 1)
  44. aligned_crop_center = np.dot(xform_matrix, crop_center_ex)
  45. dst_image = _crop_or_pad(dst_image, crop_size, aligned_crop_center)
  46. crop_begin_x = int(round(aligned_crop_center[0] - crop_size[0] / 2.0))
  47. crop_begin_y = int(round(aligned_crop_center[1] - crop_size[1] / 2.0))
  48. dst_landmarks -= np.asarray([[crop_begin_x, crop_begin_y]])
  49. if return_transform_matrix:
  50. return dst_image, dst_landmarks, xform_matrix
  51. else:
  52. return dst_image, dst_landmarks