123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354 |
- import cv2
- import numpy as np
- def get_similarity_transform(src_pts, dst_pts):
- """Get similarity transform matrix from src_pts to dst_pts
-
- Args:
- src_pts: Kx2 np.array
- source points matrix, each row is a pair of coordinates (x, y)
- dst_pts: Kx2 np.array
- destination points matrix, each row is a pair of coordinates (x, y)
-
- Returns:
- xform_matrix: 3x3 np.array
- transform matrix from src_pts to dst_pts
- """
- src_pts = np.asarray(src_pts)
- dst_pts = np.asarray(dst_pts)
- assert src_pts.shape == dst_pts.shape
- assert (src_pts.ndim == 2) and (src_pts.shape[-1] == 2)
-
- npts = src_pts.shape[0]
- A = np.empty((npts * 2, 4))
- b = np.empty((npts * 2,))
- for k in range(npts):
- A[2 * k + 0] = [src_pts[k, 0], -src_pts[k, 1], 1, 0]
- A[2 * k + 1] = [src_pts[k, 1], src_pts[k, 0], 0, 1]
- b[2 * k + 0] = dst_pts[k, 0]
- b[2 * k + 1] = dst_pts[k, 1]
-
- x = np.linalg.lstsq(A, b, rcond=-1)[0]
- xform_matrix = np.empty((3, 3))
- xform_matrix[0] = [x[0], -x[1], x[2]]
- xform_matrix[1] = [x[1], x[0], x[3]]
- xform_matrix[2] = [0, 0, 1]
- return xform_matrix
-
-
- def align_and_crop(image, landmarks, std_landmarks, align_size,
- return_transform_matrix=False):
- landmarks = np.asarray(landmarks)
- std_landmarks = np.asarray(std_landmarks)
- xform_matrix = get_similarity_transform(landmarks, std_landmarks)
- landmarks_ex = np.pad(landmarks, ((0,0),(0,1)), mode='constant', constant_values=1)
- dst_landmarks = np.dot(landmarks_ex, xform_matrix[:2,:].T)
- dst_image = cv2.warpAffine(image, xform_matrix[:2,:], dsize=align_size)
- if return_transform_matrix:
- return dst_image, dst_landmarks, xform_matrix
- else:
- return dst_image, dst_landmarks
-
-
|