12345678910111213141516171819202122232425262728293031323334353637 |
- import numpy as np
- def clip_boxes(boxes, reference_box, copy=True):
- """Clip boxes to reference box.
-
- References:
- `clip_to_window` in TensorFlow object detection API.
- """
- x_min, y_min, x_max, y_max = reference_box[:4]
- boxes = np.array(boxes, dtype=np.float32, copy=copy)
- lower = np.array([[x_min, y_min, x_min, y_min]])
- upper = np.array([[x_max, y_max, x_max, y_max]])
- np.clip(boxes[:, :4], lower, upper, boxes[:,:4])
- return boxes
-
-
- def clip_boxes_to_image(boxes, image_width, image_height, subpixel=True, copy=True):
- """Clip boxes to image boundaries.
-
- References:
- `clip_boxes` in py-faster-rcnn
- `core.boxes_op_list.clip_to_window` in TensorFlow object detection API.
- `structures.Boxes.clip` in detectron2
-
- Notes:
- Equivalent to `clip_boxes(boxes, [0,0,image_width-1,image_height-1], copy)`
- """
- boxes = np.array(boxes, dtype=np.float32, copy=copy)
- if not subpixel:
- image_width -= 1
- image_height -= 1
- np.clip(boxes[:, 0], 0, image_width, boxes[:, 0])
- np.clip(boxes[:, 1], 0, image_height, boxes[:, 1])
- np.clip(boxes[:, 2], 0, image_width, boxes[:, 2])
- np.clip(boxes[:, 3], 0, image_height, boxes[:, 3])
- return boxes
|